Condiciones que impulsarán la capacidad fotovoltaica instalada en México: Un análisis cualitativo comparativo.

Autores/as

  • David Juárez-Luna Facultad de Economía y Negocios, Universidad Anáhuac, México.
  • Eduardo Urdiales Centro Nacional de Control de Energía, México.

DOI:

https://doi.org/10.60583/gypp.v33i1.8186

Palabras clave:

capacidad instalada, fotovoltaica, condiciones, QCA, redes eléctricas inteligentes

Resumen

El objetivo de este artículo es identificar las condiciones necesarias o suficientes que impulsarán la capacidad fotovoltaica (FV) instalada en México. Para ello, se identifican diferentes configuraciones de condiciones, que pueden conducir al mismo caso deseado, a través del análisis cualitativo comparativo de casos complejos. El análisis sugiere que, para impulsar la capacidad FV instalada se debe realizar una planeación a largo plazo de la industria FV mexicana que tenga como punto de partida las cinco condiciones necesarias: a) crédito fiscal a la inversión o producción; b) feed in tariff (FIT) y feed in premium (FIP); c) desarrollo de capital intelectual, técnico y profesional; d) el impulso a la investigación y el desarrollo de tecnología FV, y e) incluir la capacidad FV instalada en redes eléctricas inteligentes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

David Juárez-Luna, Facultad de Economía y Negocios, Universidad Anáhuac, México.

Doctor en Economía por la Universidad de Essex (Inglaterra). Maestro en Economía por el Centro de Investigación y Docencia Económicas (CIDE). Ingeniero matemático por la Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional. Investigador nacional nivel I del Sistema Nacional de Investiga­dores. Sus líneas de investigación son: altruismo y redistribución, política de generación eléctrica, brecha de género y pobreza energética. Entre otras revistas, ha publicado en The Economic Journal. Ha sido docente en distintas universidades nacionales y del ex­tranjero, como el Instituto Politécnico Nacional, Instituto Tecnológico y de Estudios Superiores de Monterrey (Campus Ciudad de México) y la Universidad de Essex. En el CIDE, fue profesor investigador de la División de Economía, donde también fue el coor­dinador de las maestrías en Economía y en Economía Ambiental. Desde agosto de 2017, es profesor e investigador de la Facultad de Economía y Negocios de la Universidad Aná­huac México.

Eduardo Urdiales, Centro Nacional de Control de Energía, México.

Doctor en Gestión Estratégica y Políticas de Desarrollo (Universi­dad Anáhuac México). MSc. en Negocios Internacionales (ICN, Francia), maestro en Humanidades (Universidad Anáhuac) y licenciado en Administración y Finanzas (Uni­versidad Panamericana). Profesional por más de treinta años en puestos de alta dirección, destaca su paso como director de administración de la Oficina de la Presidencia de la República y como director general de administración de la Comisión Reguladora de Energía (CRE). Ha colaborado en empresas como el Fondo de Cultura Económica, American Express y el Infonavit. Es socio de la consultora Grownomics y actualmente labora en el Centro Nacional de Control de Energía (Cenace). Académico por más de diez años en universidades como la Universidad Anáhuac México, la Universidad Panamericana y el Tec de Monterrey. Sus áreas de investigación y publicaciones abordan los temas de desigualdad laboral, salario justo, sustentabilidad energética y energía re­novable en México. Es vicepresidente de la Fundación Tomás Moro.

Citas

Abdmouleh, Z., R. Alammari y A. Gastli (2015), “Review of Policies Encouraging Renewa¬ble Energy Integration & Best Practices”, Renewable and Sustainable Energy Reviews, 45, pp. 249-262.

Asolmex (Asociación Mexicana de Energía Solar) (2020), Monitor de información comer¬cial e índice de precios de generación solar distribuida en México, Ciudad de México, Asolmex.

Avril, S., C. Mansilla, M. Busson y T. Lemaire (2012), “Photovoltaic Energy Policy: Finan¬cial Estimation and Performance Comparison of the Public Support in Five Represen¬tative Countries”, Energy Policy, 51, pp. 244-258.

Balcombe, P., D. Rigby y A. Azapagic (2014), “Investigating the Importance of Motivations and Barriers Related to Microgeneration Uptake in the UK”, Applied Energy, 130(6), pp. 403-418.

Ballocchi, A. (2020), Fotovoltaico in Italia: storage, comunità energetiche e superbonus 110%, 4 de septiembre, en: https://www.lumi4innovation.it/fotovoltaico-in-italia-storage-comunita-energetiche-superbonus-110/ [fecha de consulta: 14 de septiembre de 2021].

Barbosa, L., C. Nunes, A. Rodrigues y A. Sadinha (2020), “Feed-in Tariff Contract Schemes and Regulatory Uncertainty”, European Journal of Operational Research, 287(1), pp. 331-347.

Barbose, G., R. Wiser y M. Bolinger (2008), “Designing pv Incentive Programs to Promo¬te Performance: A Review of Current Practice in the US”, Renewable & Sustainable Energy Reviews, 12(4), pp. 960-998.

Bayer, B. (2018), “Experience with Auctions for Wind Power in Brazil”, Renewable and Sustainable Energy Reviews, 81(P2), pp. 2644-2658.

Becerra-Pérez, L., R. González-Díaz y A. Villegas-Gutiérrez (2020), “La energía solar foto-voltaica, análisis costo beneficio de los proyectos en México”, RINDERESU, 5(2), en: http://rinderesu.com/index.php/rinderesu/article/view/104/107 [fecha de consulta: 18 de agosto de 2021].

Best, R. y P. Burke (2018), “Adoption of Solar and Wind Energy: The Roles of Carbon Pricing and Aggregate Policy Support”, CCEP Working Paper 1803, en: https://ccep.crawford.anu.edu.au/publication/ccep-working-paper/12182/adoption-solar-and-wind-energy-roles-carbon-pricing-and [fecha de consulta: 15 de noviembre de 2021].

Best, R. y P. Burke (2018), “Adoption of Solar and Wind Energy: The Roles of Carbon Pricing and Aggregate Policy Support”, Energy Policy, 118, pp. 404-417.

Brandstatt, C., G. Brunekreeft y K. Jahnke (2011), “How to Deal with Negative Power Prices Pikes?—Flexible Voluntary Curtailment Agreements for Large-scale Integration of Wind”, Energy Policy, 39(6), pp. 3732-3740.

Burns, J. y J.S. Kang (2012), “Comparative Economic Analysis of Supporting Policies for Residential Solar PV in the United States: Solar Renewable Energy Credit (SREC) Poten¬tial”, Energy Policy, 44, pp. 217-225.

Cansino, J., M. Pablo-Romero, R. Román y R. Yñiguez (2010), “Tax Incentives to Promote Green Electricity: An Overview of EU-27 Countries”, Energy Policy, 38(10), pp. 6000-6008.

Carley, S., E. Baldwin, L. MacLean y J. Brass (2017), “Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments”, Environmental and Resource Economics, 68(2), pp. 397-440.

Carstens, D. y S. Cunha (2019), “Challenges and Opportunities for the Growth of Solar Photovoltaic Energy in Brazil”, Energy Policy, 125, pp. 396-404.

Castaneda, M., S. Zapata y A. Aristizabal (2018), “Assessing the Effect of Incentive Policies on Residential pv Investments in Colombia”, en: http://hdl.handle.net/20.500.12010/8926 [fecha de consulta: 15 de enero de 2021].

Castelán, Jaime Tadeo (2020), “Actualización de la legislación del sector energético, en materia de fuentes renovables: Certificados de energías limpias y generación distribuida”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Cenace (Centro Nacional de Control de Energía) (2015-2022), en: https://www.gob.mx/cenace

Cejudo, G. y C. Michel (2016), “Coherencia y políticas públicas: Metas, instrumentos y poblaciones objetivo”, Gestión y Política Pública, 25(1), pp. 3-31, en: http://www.scielo. org.mx/scielo.php?script=sci_arttext&pid=S1405-10792016000100001&lng=es&tl ng=es [fecha de consulta: 5 de agosto de 2022].

Chimres, N. y S. Wongwises (2016), “Critical Review of the Current Status of Solar Ener¬gy in Thailand”, Renewable & Sustainable Energy Reviews, 58, pp. 198-207.

Choi, H. y L. Díaz Anadón (2014), “The Role of the Complementary Sector and its Rela¬tionship with Network Formation and Government Policies in Emerging Sectors: The Case of Solar Photovoltaics between 2001 and 2009”, Technological Forecasting and Social Change, 82, pp. 80-94.

Cinco Días (2020), “El gobierno subastará 20000 megavatios en renovables hasta 2025”, 7 de noviembre, en: https://cincodias.elpais.com/cincodias/2020/11/06/companias/1604668957_251861.html [fecha de consulta: 8 de agosto de 2021].

Crago, C.L. y E. Koegler (2018), “Drivers of Growth in Commercial-scale Solar PV Capa¬city”, Energy Policy, 120, pp. 481-491.

CRE (Comisión Reguladora de Energía) (2014-2022), en: https://www.gob.mx/cre [fecha de consulta: 25 de octubre de 2021].

Creuheras, S. (2020), “Desarrollo de las redes inteligentes en el sector energético mexicano”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Cuny, D. (2019), “La France à nouveau leader mondial des green bonds”, La Tribune, 26 de junio, en: https://www.latribune.fr/entreprises-finance/banques-finance/la-france-a-nouveau-leader-mondial-des-green-bonds-821623.html [fecha de consulta: 17 de agosto de 2021].

De Elejalde, R. y C. Ponce (2016), “Los desafíos de la intermitencia de las energías renovables no convencionales”, Observatorio Económico, 111, 2-3, DOI: https://doi.org/10.11565/ oe.vi111.124.

De Vos, K. (2015), “Negative Wholesale Electricity Prices in the German, French and Belgian Day-Ahead, Intra-Day and Real-Time Markets”, The Electricity Journal, 28(4), pp. 36-50.

DECC (Department of Energy and Climate Change) (2013), UK Solar PV Strategy Roadmap to a Brighter Future, Londres, DECC, en: https://assets.publishing.service.gov.uk/gover-nment/uploads/system/uploads/attachment_data/file/249277/UK_Solar_PV_Strate-gy_Part_1_Roadmap_to_a_Brighter_Future_08.10.pdf [fecha de consulta: 16 de julio de 2021].

Del Giorgio, F. (2011), “El benchmarking en el sector público: Aportes y propuestas de implementación para la provincia de Buenos Aires”, tesis de especialización, Universidad Nacional Tres de Febrero.

Díez-Mediavilla, M., C. Alonso-Tristán, M. Rodríguez-Amigo y T. García-Calderón (2010), “Implementation of pv Plants in Spain: A Case Study”, Renewable & Sustainable Ener¬gy Review, 14(4), 1342-1346.

Dijkgraaf, E., T. Van Dorp y E. Maasland (2018), “On the Effectiveness of Feed-in tariffs in the Development of Solar Photovoltaics”, The Energy Journal, 39(1), pp. 81-99.

EPIA (European Photovoltaic Industry Association) (2011), Solar Photovoltaic Electricity Empowering the World, Bruselas, EPIA.

García-Álvarez, M., L. Cabeza-García e I. Soares (2018), “Assessment of Energy Policies to Promote Photovoltaic Generation in the European Union”, Energy, 151, pp. 864-874.

García, Guillermo Ignacio (2020), “Tomar el control de nuestra energía: Impacto de la generación distribuida en México”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Grau, T., M. Huo y K. Neuhoff (2011), “Survey of Photovoltaic Industry and Policy in Germany and China”, Energy Policy, 51, pp. 20-37, DOI: 10.2139/ssrn.1869813.

Hansen, U., M. Pedersen e I. Nygaard (2015), “Review of Solar pv Policies, Interventions and Diffusion in East Africa”, Renewable and Sustainable Energy Reviews, 46, pp. 236-248, DOI: https://doi.org/10.1016/j.rser.2015.02.046.

Hernández, C. (2018), Reforma energética-electricidad, Ciudad de México, Fondo de Cultura Económica.

IEA (International Energy Agency) (2016), The Photovoltaic Power Systems Programme of the International Energy Agency, 2016 Annual Report, París, International Energy Agency.

IEA (International Energy Agency) (2022), World Energy Outlook 2022-Analysis, París, IEA.

IEA PVPS (International Energy Agency Photovoltaic Power Systems Programme) (2019), The iea Photovoltaic Power Systems Programme: Annual Report 2019, París, IEA.

IEA PVPS (International Energy Agency Photovoltaic Power Systems Programme) (2020), National Survey Report of pv Power Applications in China, París, IEA.

IEA PVPS (International Energy Agency Photovoltaic Power Systems Programme) y nedo (New Energy and Industrial Technology Development Organization) (2020), National Survey Report of pv Power Applications in Japan, París, IEA PVPS.

IRENA (International Renewable Energy Agency) (2022a), Renewable Capacity Statistics 2022, en: https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 [fecha de consulta: 10 de octubre de 2021].

IRENA (International Renewable Energy Agency) (2022b), Renevable Energy Statistics 2022, en: https://www.irena.org/Publications/2022/Jul/Renewable-Energy-Statistics-2022 [fecha de consulta: 10 de octubre de 2021].

IRENA (International Renewable Energy Agency) (2022c), IRENASTAT, en: https://pxweb.irena.org/pxweb/en/IRENASTAT/IRENASTAT__Power%20Capacity%20and%20Generation/ELECCAP_2022_cycle2.px/table/tableViewLayout1/ [fecha de consulta: 9 de julio de 2021].

ISE (Fraunhofer Institute for Solar Energy Systems) (2019), Recent Facts about Photovoltaics in Germany, Freiburg, ise, en: https://ww w.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html [fecha de consulta: 6 de febrero de 2021].

Jenkins, N., C. Long y J. Wu (2015), “An Overview od the Smart Grid in Great Britain”, Engineering, 1(4), pp. 413-421.

Jeong, D. (2013), “Understanding of Climate Change”, Training Manual on Low-carbon Green Management Responding to Climate Change, Asia Climate Change Education Center, pp. 11-34.

Jia, X., H. Du, H. Zou y G. He (2020), “Assessing the Effectiveness of China’s Net-metering Subsidies for Household Distributed Photovoltaic Systems”, Journal of Cleaner Produc¬tion, 262, DOI: https://doi.org/10.1016/j.jclepro.2020.121161.

Johnstone, N., I. Haščič y D. Popp (2010), “Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts”, Environmental and Resource Economics, 45(1), pp. 133-155.

Juárez-Luna, D. y E. Urdiales (2022), “Generación de electricidad fotovoltaica: Ignorada en la práctica como en la teoría, en México”, A. Ruiz-Porras e I. Salas Durazo (coords.), Temas contemporáneos de investigación en economía y políticas públicas II, Universidad de Guadalajara, en: https://www.cucea.udg.mx/include/publicaciones/coorinv/pdf/Te-mas_Contemporaneos_C_Portadas.pdf [fecha de consulta: 18 de septiembre de 2022].

Karteris, M. y A. Papadopoulos (2012), “Residential Photovoltaic Systems in Greece and in Other European Countries: A Comparison and an Overview”, Advances in Building Energy Research, 6(1), pp. 141-158.

Kimura, O. y T. Suzuki (2006), “30 Years of Solar Energy Development in Japan: Co-evolution Process of Technology, Policies, and the Market”, presentado en la 2006 Berlin Conference on the Human Dimensions of Global Environmental Change, 17 y 18 de noviembre, Berlín.

Koo, B. (2017), “Examining the Impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea’s Renewable Energy Projects through Comparative Investment Analysis”, Energy Policy, 104, pp. 144-154.

Kosonen, K. y G. Nicodème (2009), “The Role of Fiscal Instruments in Environmental Policy”, Working Papers Series 2719, CESifo Group Munich.

Kwon, T.-h. (2015), “Rent and Rent-seeking in Renewable Energy Support Policies: Feed-in Tariff vs. Renewable Portfolio Standard”, Renewable and Sustainable Energy Reviews, 44, pp. 676-681.

Lauber, V. L. Mez (2004), “Three Decades of Renewable Electricity Policies in Germany”, Energy & Environment, 15(4), pp. 599-623, DOI: 10.1260/0958305042259792.

Lee, Y., J. Paredes y S. Lee (2012), “Smart Grid and Its Application in Sustainable Cities”, nota técnica idb-tn-446, en: https://publications.iadb.org/publications/english/docu¬ment/Smart-Grid-and-Its-Application-in-Sustainable-Cities.pdf [fecha de consulta: 14 de agosto de 2021].

León-Trigo, L., E. Reyes-Archundia, J. Gutiérrez-Gnecchi, A. Méndez-Patiño y G. Chávez- Campos (2019), “Smart Grids en México: Situación actual, retos y propuesta de imple-metación”, Ingeniería, investigación y tecnología, 20(2), DOI: 10.22201/fi.25940732e.2019. 20n2.015.

Liu, J.-L., K. Wang, Q.-R. Xiahou, F.-M. Liu, J. Zou y Y. Kong (2019), “China’s Long-term Low Carbon Transition Pathway under the Urbanization Process”, Advances in Climate Change Research, 10(4), pp. 240-249.

Liu, Q., F. Cao, Y. Liu, T. Zhu y D. Liu (2018), “Design and Simulation of a Solar Chim¬ney PV/T Power Plant in Northwest China”, International Journal of Photoenergy, doi: https://doi.org/10.1155/2018/1478695.

Lu, Y., F. Yi, S. Yu, Y. Feng y Y. Wang (2022), “Pathways to Sustainable Deployment of Solar Photovoltaic Policies in 20 Leading Countries Using a Qualitative Comparative Analysis”, Sustainability, 14(10), DOI: https://doi.org/10.3390/su14105858.

Malagueta, D., A. Szklo, B. Soares, R. Soria, R. Aragão, R. Schaeffer y R. Dutra (2013), “Assessing Incentive Policies for Integrating Centralized Solar Power Generation in the Brazilian Electric Power System”, Energy Policy, 59, pp. 198-212.

Marques, A., J. Fuinhas y D. Pereira (2019), “The Dynamics of the Short and Long-run Effects of Public Policies Supporting Renewable Energy: A Comparative Study of Installed Capacity and Electricity Generation”, Economic Analysis and Policy, 63, pp. 188-206.

Martínez Prats, G., F. Silva Hernández, M. Altamirano Santiago y J. Hernández Salinas (2021), “Apuntes de la energía fotovoltaica en México”, 3C Tecnología: Glosas de Inni¬vación Aplicadas a la Pyme, 10(1), pp. 17-31, en: http://ojs.3ciencias.com/index.php/3c-tecnologia/article/view/1164 [fecha de consulta: 7 de febrero de 2021].

McKenna, E., J. Pless y S. Darby (2018), Solar Photovoltaic Self-consumption in the UK Residential Sector: New Estimates from a Smart Grid Demonstration Project”, Energy Policy, 118, pp. 482-491.

Michaud, G. (2016), “Net Energy Metering and Community Shared Solar Deployment in the U.S.: Policy Perspectives, Barriers, and Opportunities”, tesis doctoral, Virginia Commonwealth Universit.

Mir-Artigues, P., E. Cerdá y P. del Río (2018), “Analysing the Economic Impact of the New Renewable Electricity Support Scheme on Solar pv Plants in Spain”, Energy Policy, 114, pp. 323-331.

Mordor Intelligence llp (2020), China Smart Grid Network Market - Growth, Trends, and Forecasts (2020-2025), en: https://www.reportlinker.com/p05989483/China-Smart- Grid-Network-Market-Growth-Trends-and-Forecasts.html?utm_source=GNW [fecha de consulta: 15 de mayo de 2021].

Mughal, S., Y. Sood y R. Jarial (2018), “A Review on Solar Photovoltaic Technology and Future Trends”, International Journal of Scientific Research in Computer Science, Enginee¬ring and Information Technology, 4(1), pp. 227-235.

Muñoz, J., M. Rojas y C. Barreto-Calle (2018), “Incentivo a la generación distribuida en el Ecuador”, Ingenius: Revista de Ciencia y Tecnología, 19, pp. 60-68.

Năstase, G., A. Şerban, A. Năstase y G. Dragomir (2017), “Hydropower Development in Romania: A Review from its Beginnings to the Present”, Renewable and Sustainable Energy Reviews, 80, pp. 297-312.

Năstase, G., A. Șerban, G. Dragomir, A.I. Brezeanu e I. Bucur (2018), “Photovoltaic De-velopment in Romania: Reviewing what Has Been Done”, Renewable and Sustainable Energy Reviews, 94, pp. 523-535.

Nicolli, F. y F. Vona (2016), “Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy”, Energy Economics, 56, pp. 190-204.

OCDE (Organización para la Cooperación y el Desarrollo Económicos) y AIE (Agencia In-ternacional de Energía) (2010-2020), Monthly oecd Electricity Statistics, en: https://www.iea.org/reports/monthly-oecd-electricity-statistics [fecha de consulta: 18 de julio de 2021].

Olczak, P., D. Kryzia, D. Matuszewska y M. Kuta (2021), “‘My Electricity’ Program Effec¬tiveness Supporting the Development of pv Installation in Poland, Energies (Basel), 14(1), DOI: https://doi.org/10.3390/en14010231.

Ortiz, María I. y V.F. Ramírez (2020), “Retos del gobierno ante la transición energética: 2018-2024”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Park, N., K.J. Lee, K.J. Lee, Y. Lee, K. Lee, K. y S.H. Lee (2013), “In-depth Analysis on r&d Investment and Strategy on pv in South Korea”, Energy Policy, 54, pp. 391-396.

Pearce, P. y R. Slade (2018), “Feed-in Tariffs for Solar Microgeneration: Policy Evalua¬tion and Capacity Projections Using a Realistic Agent-based Model”, Energy Policy, 116, pp. 95-111.

Polzin, F., F. Egli, B. Steffen y T. Schmidt (2019), “How Do Policies Mobilize Private Fi¬nance for Renewable Energy?-A Systematic Review with an Investor Perspective”, Applied Energy, 236, pp. 1249-1268.

Ramírez, F. J., A. Honrubia-Escribano, E. Gómez-Lázaro y D.T. Pham (2017), “Combining Feed-in Tariffs and Net-metering Schemes to Balance Development in Adoption of Photovoltaic Energy: Comparative Economic Assessment and Policy Implications for European Countries”, Energy Policy, 102, pp. 440-452.

Ramírez, V.F. (2019), “Subastas eléctricas en México, evaluación y qué hacer sin ellas”, Nexos, 6 de junio, en: https://www.nexos.com.mx/?p=42822 [fecha de consulta: 7 de noviembre de 2021].

REN21 (2017), Renewables: Global Status Report 2017 Update, París, ren21.

Rihoux, B. y C.C. Ragin (2008), Configurational Comparative Methods: Qualitative Comparative Analysis (qca) and Related Techniques, Thousand Oaks, Sage.

Rubio-Aliaga, A., A. Molina-García, M. García-Cascales y J. Sánchez-Lozano (2019), “Net-Metering and Self-Consumption Analysis for Direct pv Groundwater Pumping in Agri¬culture: A Spanish Case Study”, Applied Sciences, 9(8), DOI: https://doi.org/10.3390/ app9081646.

Ruegg, R. y P. Thomas. (2011), Linkages of doe’s Solar Photovoltaic r&d to Commercial Renewable Power from Solar Energy, Washington, D.C., US Department of Energy Office of Energy Efficiency and Renewable Energy.

Sampaio, P.G. y M.O. González (2017), “Photovoltaic Solar Energy: Conceptual Framework”, Renewable and Sustainable Energy Reviews, 74, pp. 590-601, DOI: 10.1016/j.rser.2017. 02.081.

Sarzynski, A., J. Larrieu y G. Shrimali (2012), “The Impact of State Financial Incentives on Market Deployment of Solar Technology”, Energy Policy, 46, pp. 550-557.

Schallenberg-Rodriguez, J. (2017), “Renewable Electricity Support Systems: Are Feed-in Systems Taking the Lead? Renewable and Sustainable Energy Reviews, 76, pp. 1422-1439.

Semarnat (Secretaría de Medio Ambiente y Recursos Naturales) (2020), Contribución Determinada a nivel Nacional: México. Versión actualizada 2020, Ciudad de México, Semarnat.

Sener (Secretaría de Energía) (2020), Programa Sectorial de Energía 2020-2024, Diario Oficial de la Federación, 8 de julio.

Shuai, J., X. Cheng, L. Ding y J. Yang (2019), “How Should Government and Users Share the Investment Costs and Benefits of a Solar pv Power Generation Project in China?” Renewable & Sustainable Energy Reviews, 104, pp. 86-94.

Sirin, S. e I. Sevindik (2021), “An Analysis of Turkey’s Solar pv Auction Scheme: What Can Turkey Learn from Brazil and South Africa?” Energy Policy, 148, DOI: https://doi.org/10.1016/j.enpol.2020.111933.

Steffel, S., P. Caroselli, A. Dinkel, J. Liu y R. Sackey (2012), “Integrating Solar Generation on the Electric Distribution Grid”, IEEE Transactions on Smart Grid, 3(2), pp. 878-886.

Streimikien, D. (2007), “Sustainability Assessment of Policies and Technologies”, presen¬tado en el seminario “Integration of sd Principles and Green Growth Policy Tools in the speca Countries”, Astana.

Sudhakar, R. y J. Painuly (2004), “Diffusion of Renewable Energy Technologies: Barriers and Stakeholders’ Perspectives”, Renewable Energy, 29(9), pp. 1431-1447.

Sun, P. y P. Nie (2015), “A Comparative Study of Feed-in Tariff and Renewable Portfolio Standard Policy in Renewable Energy Industry”, Renewable Energy, 74, pp. 255-262.

The World Bank (2017), Global Solar Atlas, en: https://globalsolaratlas.info/map [fecha de consulta: 12 de junio de 2021].

Torres, A. (2020), “Barreras de la transición energética”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Treviño, M.J. (2020), “Revolucionando la forma en que las empresas en México compran energía”, en P. Necoechea Porras (comp.), México hacia una transición energética, Ciudad de México, Fundación Konrad Adenauer.

Tveten, Å., T. Bolkesjø, T. Martinsen y H. Hvarnes (2013), “Solar Feed-in Tariffs and the Merit Order Effect: A Study of the German Electricity Market”, Energy Policy, 61, pp. 761-770.

U.S. Department of Energy (2008), About the Solar America Initiative, Washington, D.C., Department of Energy.

U.S. Department of Energy (2016), 2016-2020 Strategic Human Capital Plan.

Urdiales, E. (2014), “Energía solar: Su aprovechamiento mediante sistemas fotovoltaicos”, en A. Román Zozaya, R. Montes Mendoza y A Morfín Maciel, Políticas públicas y gestión estratégica en México: Retos y oportunidades, Huixquilucan, Estado de México, Univer¬sidad Anáhuac México Norte, Facultad de Economía y Negocios, en: http://pegaso. anahuac.mx/accesoabierto/publicaciones.php?Accion=Informacion&Tab=Escuela&A rea=&Tema=&Subtema=&Year=&Autor=&Tipo=&Universidad=1&Escuela=2&Centro=2&Pub=5 [fecha de consulta: 10 de octubre de 2021].

Van Dijk, A.L., L.W.M. Beurskens, M.G. Boots, M.B.T. Kaal, T.J. de Lange, E.J.W. Van Sambeek y M.A. Uyterlinde (2003), Renewable Energy Policies and Market Developments, ecn-c-03-029.

Vargas-Hernández, J.G. y E.R. Ascencio Espinosa (2016), “Solar Panel and Renewable Energy in Mexico Development and Outlook for Photovoltaic”, International Journal of Environment and Sustainability, 5(2), pp. 89-98, DOI: 10.24102/ijes.v5i2.677.

Varghese, S. y R. Sioshansi (2020), “The Price is Right? How Pricing and Incentive Mecha¬nisms in California Incentivize Building Distributed Hybrid Solar and Energy-storage Systems”, Energy Policy, 138, DOI: https://doi.org/10.1016/j.enpol.2020.111242.

Wang, T., Y. Gong y C. Jiang (2014), “A Review on Promoting Share of Renewable Energy by Green-trading Mechanisms in Power System”, Renewable and Sustainable Energy Reviews, 40, pp. 923-929.

Watts, D., M. Valdés, D. Jara y A. Watson (2015), “Potential Residential pv Development in Chile: The Effect of Net Metering and Net Billing Schemes for Grid-connected pv Systems”, Renewable and Sustainable Energy Reviews, 41, pp. 1037-1051.

Wissner, M. (2008), “The Smart Grid - A Saucerful of Secrets? Applied Energy, 88(7), pp. 2509-2518.

Wu, Y., J. Zhou, Y. Hu y L. Li (2018), “A todim-based Investment Decision Framework for Commercial Distributed pv Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China”, Energies, 11(5), DOI: https://doi. org/10.3390/en11051210.

Xie, H., C. Zhang, B. Hao, S. Liu y K. Zou (2012), “Review of Solar Obligations in China: Renewable and Sustainable Energy Reviews”, Renewable and Sustainable Energy Reviews, 16(1), DOI: 10.1016/j.rser.2011.07.140.

Xin-gang, Z., L. Pei-ling y Z. Ying (2020), “Which Policy Can Promote Renewable Ener¬gy Toachieve Grid Parity? Feed-in Tariff vs. Renewable Portfolio Standards”, Renewable Energy, 162, pp. 322-333.

Yadav, S. (2019), “Energy, Economic and Environmental Performance of a Solar Rooftop Photovoltaic System in India”, International Journal of Sustainable Energy, 39(1), pp. 51-66, DOI: 10.1080/14786451.2019.1641499.

Yang, C. y Z. Ge (2018), “Dynamic Feed-in Tariff Pricing Model of Distributed Photovol¬taic Generation in China”, Energy Procedia, 152, pp. 27-32.

Yu, H., N. Popiolek y P. Geoffron (2014), “Solar Photovoltaic Energy Policy and Globali¬zation: A Multiperspective Approach with Case Studies of Germany, Japan, and China. Progress in Photovoltaics: Research and Applications”, Research and Applications, 24(4), pp. 458-476.

Yuan, J., S. Sun, W. Zhang y M. Xiong (2014), “The Economy of Distributed pv in China”, Energy, Elsevier, vol. 78(C), pp. 939-949.

Zhai, P. y E. Williams (2012), “Analyzing Consumer Acceptance of Photovoltaics (pv) Using Fuzzy Logic Model”, Renewable Energy, 41(C), pp. 350-357.

Zhang, H., T. Van Gerven, J. Baeyens y J. Degrève (2014), “Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing pv Efficiencies and Costs”, The Scientific World Journal, DOI: 10.1155/2014/404913.

Zhang, Y., J. Song y S. Hamori (2011), “Impact of Subsidy Policies on Diffusion of Pho¬tovoltaic Power Generation”, Energy Policy, 39(4), pp. 1958-1964.

Descargas

Publicado

2024-05-03
Metrics
Vistas/Descargas
  • Resumen
    401
  • PDF
    639
  • XML
    9

Cómo citar

Juárez-Luna, David, y Eduardo Urdiales. 2024. «Condiciones Que impulsarán La Capacidad Fotovoltaica Instalada En México: Un análisis Cualitativo Comparativo». Gestión Y Política Pública 33 (1):1-33. https://doi.org/10.60583/gypp.v33i1.8186.

Número

Sección

Gestión y política pública

Métrica